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FOREWORD 

This document is one of sixteen sections that comprise the f ina l  
report  prepared by the  Minneapolis-Honeywell Regulator Company f o r  the  
National Aeronautics and Space Administration under contract  NASw-563. 
The report  is  issued i n  the  following sixteen sections t o  f a c i l i t a t e  
updating as progress warrants: 

summary 

Control of Plants Whose Representation Contains Derivatives 
of the  Control Variable 

Modes of F in i te  Response Time Control 

A Suff ic ient  Condition i n  Opt ima l  Control 

T i m e  Op t ima l  Control of Linear Recurrence Systems 

L L I W = - U ~ U I I I U ~  JJUUIIU~LL ruusz wwruina ie  Control of' Linear 
Recurrence Systems 

Penalty Functions and Bounded Phase Coordinate Control 

Linear Programming and Bounded Phase Coordinate Control 

T i m e  Optimal Control with Amplitude and Rate Limited Controls 

A Concise F o m l a t i o n  of a Bounded Phase Coordinate Control 
Problem as a Problem i n  the Calculus of Variations 

A Note on System Truncation 

S ta t e  Determination f o r  a Flexible Vehicle Without a Mode 
Shape Requirement 

An Application of the  Quadratic Penalty Function 
t o  the Determination of a Linear Control f o r  a Flexible Vehicle 

Minimum Disturbance Effects Control of Linear Systems with 
Linear Controllers 

An Alternate Derivation and Interpretat ion of the Drift-Minimum 
Principle 

A Minimax Control for a Plant Subjected t o  a Known Load Disturbance 

ma-- n-&.-.-.. n _.__ >-a rn---- a __.. - 2  

Criter ion 

Section 1 (1541-TR 1) provides the motivation f o r  t he  study e f fo r t s  
The and objectively discusses t h e  significance of the r e su l t s  obtained. 

r e su l t s  of inconclusive and/or unsuccessful investigations a re  presented. 
Linear programming i s  reviewed i n  d e t a i l  adequate fcr sections 6 ,  8, and 16. 

It is  shown i n  sect ion 2 that  the purely formal procedure f o r  synthe- 
s iz ing  an optimum bang-bang control ler  f o r  a plant whose representation 
contains derivatives of the  control variable y ie lds  a correct  r e s u l t .  
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In section 3 it is shown that the problem of controlling m components 
(1 < m < n), of the state vector for an n-th order linear constant coefficient 
plant, To zero in finite time can be refonnulated as a problem of controlling 
a single component. 

Section 4 shows Pontriagids Maximum Principle is often a sufficient 
condition for 3ptimal control of linear plants. 

Section 5 develops an algorithm for complting the time optimal control 
functions for plants represented by linear recurrence equatlons. 
may be to convex target sets defined by quadratic forms. 

Steering 

In section 6 it is shown that linear inequality phase constraints 
can be transformed into similar constraints on the control variables. 
Methods for finding controls are discussed. 

Existence of and approximations to optimal bounded phase coordinate 
controls by use of penalty functions are discussed in section 7. 

In section 8 a maximum principle is proven for time-optimal control 
with bounded phase constraints. An existence theorem is proven, The 
problem solution is reduced to linear programming. 

A backing-out-of-the-origin procedure for obtaining trajectories for 
time-optimal control with amplitude and rate limited control variables is 
presented in section 9. 

Section 10 presents a reformulation of a time-optimal bounded phase 
coordinate problem into a standard calculus of variations problem. 

A mathematical method for assessing the approximation of a system by 
a lower order representation is presented in section 11. 

Section I 2  presents a method for determination of the state of a 
flexible vehicle that does not require mode shape information. 

The quadratic penalty function criterion is applied in section 13 to 
develop a linear control law for a flexible rocket booster. 

In section 14 a method for feedback control synthesis for minimum load 
disturbance effects is derived. Examples are presented. 

Section 15 shows that a linear fixed gain controller for a linear 
constant coefficient plant may yield a certain type of invariance to 
disturbances. 
the concept of complete controllability. 
obtained as a specific example. 

Conditions for obtaining such invariance are derived using 
The drift minimum condition is 

In section 16 linear programming is used to determine a control function 
that minimizes the effects of a known load disturbance. 
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A NOTE ON SYSTEM TRUNCATION* * By E. R .  Rang 

ABSTRACT 
/ 5 3 9  + 

The problem of  cont ro l  design of high order  systems based 

on the c h a r a c t e r i s t i c s  of the  lower order  e s s e n t i a l  elements of 

the system i s  considered by approximation of  asymptotic,  some- 

t i m e s  ca l led  s ingular  per turbat ion,  type.  A preliminary general  

development i s  given and d e t a i l  ca lcu la t ions  f o r  a simple problem 

a r e  wr i t t en  ou t ,  These r e s u l t s  i nd ica t e  t h a t  t he  technique 

leads t o * t h e  same design found by previous inves t iga to r s  and the 

only advantage appears t o  be an estimate of  e r r o r s .  &fJ=- 
INTRODUCTION 

A l a rge  number of  problems devolve t o  an est imat ion of 

so lu t ions  of d i f f e r e n t i a l  equations of  high order  from so lu t ions  

o f  equat ions of much lower order obtained by I1 t runcat ing" the  

o r i g i n a l  system. A general  ana ly t i ca l  estimating procedure 

f o r  t he  case i n  which t h e  system of  equations has constant  

c o e f f i c i e n t s  i s  out l ined ,  and a p a r t i c u l a r  example is  in-  

ves t iga t ed ,  

GENERAL DEVELOPMENT 

Suppose tha t  the system can be wr i t t en  i n  the form 

$ Senior  Research Engineer, Minneapolis-Honeywell Regulator Company, 
Minneapolis, Minnesota, 
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i = A(E)X + B(E)Y + a(€) u(t) 
~f = C ( E ) X  + D(E)~ + b ( E )  u(t) 

in which the vector x has m components, y has n components, and 

u(t) is a single forcing function. The constant matrices A ( € ) ,  

B ( E ) ,  C(r) ,  D(6) and vectors a(€), b ( E )  are of compatible dimensions, 

of course, and differentiable in E; E is assumed to be a positive 

scalar parameter which will be regarded as small. In applications, 

it will be the reciprocal of some gain parameter. 

If E->O, equations (1) reduce to a system of order my 

rp = A(0) cp + B(0)P + a(0) u(t) 

0 = C(0) cp + D ( 0 ) P  + b(0) u(t), 
(2) 

which will be called the reduced system. 

so that the second equation of (2) may Be solved to give 

Now assume det D(0) # 0 

or 

where 

F(0) = A ( 0 )  - B(0)D'l(O)C(O) and f(0) = a(0) -B(O)D-l(O)b(O), 

4 

(5) 

Suppose now, that a function u(t) which takes cp from an initial 

point cp 

criterion has been found. The problem is to estimate the behavAor 

of the solutions x, y of equation (1) which initiate from xo,yo. 

Hence, a formula in E for the errors 

initial conditions 

to the origin time-optinally or according to some other 0 

= x-cp,q = y - JI,  starting with 



-3- 

f = x o  
0 

- 
90 - yo 

is sought. 

ERROR EQUATIONS 

The d i f f e r e n v i a l  equations f o r  t he  e r r o r s  are 

i = A ( E ) ~  + B ( E ) ~  + {A(E)-A(O)-[B(E)-B(O) lD-l(0)C(O)) q, 

+ {a(€) - a ( 0 ) -  [B(~)-B(o)]D-~(o)b(o)~~(t) 

+ ED-’(O)C(O) F(O)\ rp + @(E) - D(E)D-’(O)b(O) 
E;= c(E)f + D ( E ) ~  + k ( E )  - D(E)D-~(O>C(O) 

$- Ec-l(Q)c(o) r(n)I ;(t) + fD-l(Q)b(o);!t!. 

But wi th  r e l ay  control ,  ;(t) does not  exist everywhere. 

a t ransformation 

Hence, 

= - D”(E)C(E)~ + D-’(O)b(O) u ( t )  (8 1 
is  made ( the  second term is added t o  introduce a f a c t o r  of E i n  

the e-term), and the  e r r o r  equations become 

. 

4 = F(44 + B(4C + G ( 4 c p  + g ( 4  u ( t )  

€ 5  = ED-~(E)C(E)F(E)~ + [D(E) + ED-~(E)C(E)B(E)] 5 ( 9 )  

+ H(4 rp + h ( 4  u ( t ) ,  

where the  abbreviat ions 

G(E) = A(€) - A ( 0 )  - [B(E)-S(O)]D‘~(O)C(O) 
g(E) = a ( € )  - a ( 0 )  + B(0)  D-’(O)b(O) 

~ ( € 1  = - D(~)D-’(o)c(o) + ED-~(o)c(o)F(o)+ 
+ ED-’ ( E )C (E )G( E ) 

h ( E )  = b ( E )  + ED-’ (O)C(O) f (O)  + ED-~(E)C(E)~(E). 

have been introduced. The solut ion which i s  desired has the i n i t i a l  
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condi t ions 
1 

0 

z 

a 

0 - ‘Po eo = 

CO = 9, + D - l ( ~ ) C ( ~ ) e o  - D-’(O)b(O)U(O) (11) 

= yo + D - ’ ( E ) C ( E ) ( X ~ - ~ ~ )  + D-l(0)C(O)po. 

a r e  sought. After subs t i t u t ing  these  i n  ( g ) ,  powers of E are 

iden t i f i ed  so t h a t  t he  functions p, q, P ,  Q a r e  required t o  s a t i s f y  

6 = F(0) p + B(0)q + B(O)D-’(O)b(O)u(t) 

€6 = D(E)q + b(0 )  u ( t )  

P = F ( 0 ) P  + B(0)Q + Fo-F(O) E (P+€P) + Bo-B(O)( E q + q )  

with the  i n i t i a l  conditions 

Po = xo - Po 

go = Y, + D-’(E)c(E)X, 

Po = 0 

Qo = 1 E [ D ’ l ( O ) C ( O )  - D - l ( ~ ) C ( ~ ) ] y , .  

Then equation (5) may be solved for cp, t he  second equation o f  (13) 



solved for q, the first f o r  p,  and finally the higher order errors 

from (14) may be estimated. 
1 

Let @(t) be a funamental matrix of the homogeneous part of 3 

and Y(t,E) be the corresponding result f o r  the second equation of 

1 

e L 

K(t) = D ' I ( E ) C (  E ) F ( E )  [p(  t)+EP( t) ] E ) C (  E ) B ( E ) Q (  t) (20) 

CONVERGENCE 

Sufficient hypotheses must be added so that 
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These imply c ( t , E )  >O -D-’(O)b(O)u(t), ( t  > 0 ) .  Certainly 
the convergence w i l l  no3 be uniform a t  t = 0, i f  the i n i t i a l  E- o+ 

condi t ions eo, qo are not zero. 

layer here .  

expected s ince  < ( t , E )  w i l l  be continuous i n  t .  

There w i l l  be s o r t  of a boundary 

Also t rouble  a t  t h e  switching poin ts  of u ( t )  i s  

Now the bas ic  supposit ion i s  made: 

Hypothesis A: The c h a r a c t e r i s t i c  roo t s  of  t he  matr ix  D ( E )  have 

negat ive r e a l  p a r t s .  

are those c h a r a c t e r i s t i c  roots ,  t he re  i s  a constant  01 such t h a t  

More prec ise ly ,  i f  d i ( E )  = a i (€)  +a p i ( € )  

( T i ( € )  - < -a < 0 ,  i = 1,2 , . . , ,n .  

Thus, the  p a r t  of t he  system which i s  thrown away i n  the  t runca t ion  

i s  required t o  be s t a b l e  and remain s t a b l e  a s  E->O . With t h i s  + 

assumption and the  norm M of a matrix M a s  the  sum of the 

absolute  values of a l l  i t s  elements, a constant  R can be found 

T h i s  w i l l  be a bas ic  t o o l  f o r  making est imates .  

The f i r s t  vict im w i l l  b e  t he  i n t e g r a l  i n  the second equation 

o f  (18). Assume t h a t  u ( t )  has a t  most a f i n i t e  number o f  jump 

d i scon t inu i t i e s .  If  t i s  not one of these points ,  i t  i s  easy t o  

L 
show tha t  

l i m ,  7 l b  Y(t-T,c)b(O)u(T)dT = -D-’(O)b(O)u(t) 
E-> 0 0 
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I n  any event the  l i m i t  i s  

Calculate  as follows: 

-D-’(O)b(O)u(t-O). 

t 
1. c I Y ( t - T , E ) b ( O ) U ( T ) d T  = D”(E)  [Y( t ,~) - I ]b(O)u( t -v)  
= 0  t + 1 I Y(t--c,E)b(O)[u(-c)-u(t-v) l d ~ ,  

€ 0  

where v i s  chosen so t h a t  U(T) i s  continuous on [ t - v , t ) .  Let  

0 < v < t ,  and write the l a s t  term as 

t 1 t - v  

0 0 t - v  
1 t 1 IiZ I li L lis I li + 117 I li . 

For the first i n t e g r a l ,  w i t h  lul - < U, 

For the second quant i ty ,  s ince U(T) - u( t -v )  i s  continuous i n  

[ t - v , t ) ,  apply the mean value theorem t o  
U 
E t - -(t-7) 

J U ( T ) - U ( t - V )  ldT.  
t 

I i i  I I I  L p l j b (o ) I /  I e 
t -v t -v 

Hence, it i s  asser ted  t h a t  there i s  a tl, t - v  < tl < t such tha t  

a - qt- l )  t - -(t--c) 
d.r E rl e E lu(-c)-u(t-v)ld-c =lu( t , ) -u( t -v)  I j  e 

E t - v  t -v 

+ Fina l ly ,  with v = 6, l e t  E->O and conclude t h a t  

The r e s t  follows s ince I i Y ( t , E ) l i  + >o, ( t  > 0). 
E->O 
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Now turning to the integral in the third of equations 18, 

it can be shown that 

lim + p(t) = @(t) po, (t > 0 ) .  
E->O 

Equations (19) may be analyzed with similar considerations 

since over a finite time interval P, Q are bounded. A conjecture is 

lim + Q(t) = - D'l(0) lim + K(t-0). ( 2 5 )  
E->O E-> 0 

In any case, with sufficient patience, explicit formulas for the 

bounds on P ,  Q may be calculated. It is probably wiser to cal- 

culate these bounds for each example rather than to work out a 

general formula. 

FENARKS 

This calculation appears to be a complicated way of doing 

straightforward analysis since the equations considered have con- 

stant coefficients and explicit solutions may be immediate.ly written. 

Nevertheless, it does have some merit in that the detailed structure 

of the coefficient matrix does not need to be considered to arrive 

at qualitative statements about the solution behavior. This 

procedure may be generalized to time-varying and nonlinear equations, 

and perhaps will be of greater utility in these cases. Nevertheless, 

it has been shown that a particular truncation process can be 

analytically formulated and qualitative estimates of the system be- 

havior can be obtained. 

The preceding calculations are summarized by the following 

formulas: the solutions of equations (1) with initial conditions 

yo can be estimated in terms of the solutions of the reduced xO 

equations (2)  with initial conditions Q ~ ,  Po by 
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and i n  the  event t ha t  the  roots  of D ( E )  are stable and xo = rpO, 

then 

l i m  + x ( t )  = c p ( t )  [ t  > 0 ,  t = poin ts  of 
E->O d i scon t inu i ty  of  u(  t )  1. 

u . m  + Y ( t )  = ?m), 
E->O 

Consider a simple t h i r d  order  p l a n t  which has a t r a n s f e r  

func t ion  given by the  expression 

k 
s(7s+l)(ps+l) 

where p < < ~ .  An attempt i s  made t o  r egu la t e  t h i s  p l an t  t i m e -  

opt imal ly  but  w i t h  a second o r d e r  c o n t r o l l e r  s ince  it is 

reasonable t h a t  the f a c t o r  ( v s + l )  w i l l  have l i t t l e  e f f e c t .  The 

design of  t he  proper con t ro l l e r  is answered by J. A .  Lovingood 

i n  reference 1. However, t h a t  design r equ i r e s  t h a t  the e n t i r e  

s t a t e  of the  t h i r d  order  system be measured o r  e l s e  an approximation 

must be made t h e  consequences of which a r e  not e a s i l y  determined. 

A search i s  made f o r  an  approximate c o n t r o l l e r  using asymptotic 

ana lys i s  more o r  less along the l i n e s  of t h e  previous genera l  

discussion.  The r e s u l t s  a r e  compared w i t h  t h e  mechanization given 

by Lovingood ' s  procedure. 

DEVELOPMENT 

The d i f f e r e n t i a l  equation associated wi th  t h e  t r a n s f e r  funct ion 
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-t/T -t/p 
x(t) = kt + A + Be + Ce 

when the plant is assumed to be driven by a plus one forcing 

function. The particular solution originating from t k  point 

(xo,xo,xJ at time t=O is 
. .. 
X(t) = kt + [XO-(T+p)(k-20) + ~p go ]  

and its derivative Is found to be 

-t/T .. -t/p 
+ +k-20-7~o le k(t) = k - - 7 [k-ko -p YoIe 

T-W T-CL 

For t > y > 0, where y is a small constant, the exponential 

e -t/p w i l l  be very small f o r  small values of p > 0. In fact, there 

is a suitable constant An such that 

for all positive integers n. We say that e -t/b is asymptotic to 

zero and write 

Hence ( 3 0 )  and (31) may be approximated asymptotically by the 

relations 
* =  -t/T [k-ko-pxo ]e x(t).rkt + [X,-(~~)(k-~,)+Tp~~;,]+ - T2 

*-P 

G(t)lTk - - 7 [ k-?o-p?o ]e -t/7 
7% 

and by combining the two expressions we get 

x(t)=-Tk log ['; + [xo- (T*) ( k - G o ) + ~ ? o  I+? [ k-k( t ) 1. 
k-x -pz0 

0 

Repeating the definition of asymptotics, all that is meant by 

relation (35), which is o f  the form 

f(+=dt)> 
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i s  t h a t  t h e r e  i s  a constant An f o r  each n such t h a t  

If(t) - q ( t >  I < An pn, (W > 0 ,  t 2 Y). ( 3 7 )  

Thus, equation (35) a s s e r t s  t h a t  t h e  approximation becomes b e t t e r  

the  smaller  y i s  taken and holds exac t ly  i n  t h e  l i m i t  a s  y->O . + 

(Reference 2 g ives  a good exposi t ion of t h i s  type of ana lys i s . )  

Assume t h a t  there i s  a switching curve i n  the x?-phase plane 

I f  a switch i s  made a t  (xo, ko) of  the form shown i n  t h e  f igure .  

from a e -posi t ion t o  $ for the  fo rc ing  funct ion,  t h e  quant i ty  

zfi w i l l  i n  general  be a r b i t r a r y  and w i l l  cause a devia t ion  from 

t h e  switching curve. Indeed, the  system is  o f  t h i r d  order  and w i l l  

not usua l ly  follow t h i s  p ro jec t ion  i n  t k E  &-plane. T h i s  devia t ion  

v 

may d r i v e  the  phase point  back i n t o  t h e  E - r e g i o n  so t h a t  i t  i s  

poss ib l e  t o  have severa l  switches on the way t o  the o r i g i n .  For 

ana lys i s ,  assume t h a t  Xo is  such t h a t  the  t r a j e c t o r y  remains i n  the 

G-swi t ch ing  region and so an e r r o r  E ( t )  i s  defined t o  be 

4 t )  = X0(4 - x ( t ) ,  (38) 
where t h e  switching curve has been parameterized by Q so t h a t  

xo(0) i s  the  o r i g i n a l  i n i t i a l  value xo and ko(a) = ;(t). 

Assuming t h a t  

E ( t )  > 0, 0 - < t - < to, and ;(to) = 0, 

w e  f ind  

0 
A = €(to)  - x o ( G o ) = T k  log  

- (-c+IL)(k-?o) + -. -ck, - [xo 
( 3 9 )  

or af te r  manipulating w i t h  logarithms 
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.. 

pxo ) A-pk + T k  log (1- k) - - Tk log  (1- k-R, 

Xo - (T*) io - Tk log  (1- 

Since nothing can be done with the terms i n  Goy 

Xo = - (T+tL) %o - T k  log (1- F) + Xo(Uo) (41) 

i s  chosen as t h e  switching curve. There w i l l  be a dead zone of  

half- length xo(u0) along the  x-axis (usual ly  xo(ao) = 0) and the 

t r a j e c t o r y  w i l l  miss the  o r ig in  by an e r r o r  of  .. 
h=pk + Tk log (1- $) - TpjIo - T k  log  (1- k-Xo 1 - xo(ao). (42) 

pxO 

Note that  as p->O the exact formula f o r  the second order  case,  

namely 

(43) xO x0 = - .[Go + k log (1- F ) ] ~  (ko < 0, Xo(ao)  = O), 

i s  recovered from equation ( 4 1 ) .  

LOVINGOOD' s TECHNIQUE 

The transformed equation i s  

X ( T S  + l)(p,S+l)X = h / S .  (44) 

The method of reference 1 i s  t o  introduce a new dependent va r i ab le  

Y ( t )  9 

Y = (ps+1) x (45) 

and t o  cont ro l  it time-optimally. The equation f o r  y ( t )  i s  - 
obviously 

S ( T S  + 1 ) Y  = kU/S 

and the switching curve is 

YO = - T€?o + k log (1- j$l, Yo < 0. $0 
(47) 

Since y = x + p?, t h i s  gives  

io* go 
= - (p + T )  io - T p  zo - Tk log (1- --) xO (48) 
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i 

If the Zo-terms a r e  simply ignored we r e t u r n  t o  the previous 

formula (41) .  

Thus, the method of asymptotic ana lys i s  of the equations of 

motion f o r  t h i s  problem leads t o  the same con t ro l  found by 

J .  A .  Lovingood i n  previous work. 

CONCLUSIONS 

An advantage t h e  asymptotic approximation method appears t o  

o f f e r  over o t h e r  methods i s  i t s  c a p a b i l i t y  f o r  es t imat ing e r r o r s .  
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